
CSCI2202
Lecture 12: Networks and Final

maguire-lab.github.io/scientific_computing/

Finlay Maguire (finlay.maguire@dal.ca)

TAs: Ehsan Baratnezhad (ethan.b@dal.ca); Precious Osadebamwen (precious.osadebamwen@dal.ca)

mailto:finlay.maguire@dal.ca
mailto:ethan.b@dal.ca
mailto:precious.osadebamwen@dal.ca

● Graph-structured Data
● Networks/Graphs Basics
● NetworkX
● Nodes/Edges in NetworkX
● Network I/O
● Network Visualization
● Centrality Analyses
● Final Exam Question Examples

○ Mid-Term Style Questions
○ Explain This Concept questions
○ Fix This Bug Questions

Overview

Network Data

Lots of datasets are best represented as
a network of connected entities:

● Sociology: social networks, web
page, research papers…

● Infrastructure: power grids, internet
connectivity, human/vehicle flows…

● Life Sciences: neural connectome,
landscapes, genome assembly…

How can we analyze these types of
network data?

Anatomy of a network/graph

● Networks and graphs are synonyms
● Edges/Links can be directed or undirected

(and can sometimes form loops)
● Edges/Links can have attributes (e.g.,

weights corresponding to physical distance
or number of links)

● Nodes/Vertices can have attributes (e.g.,
class of neuron, parent domain etc)

● Graphs don’t have to be fully connected
● Unconnected parts are called “components”
● Subset of a graph is called a subgraph

Node/Vertices
V Edges/Links

E

https://www.baeldung.com/cs/graph-theory-intro

Hamlet-onian Directed Graph

Node
Edge

https://www.cs.jhu.edu/~langmea/resources/lecture_notes/16_assembly_scs_v2.pdf

Mathematical Graph Representations

Adjacency List:

Node -> connected Nodes

Adjacency Matrix:

Node X Node connections

Incidence List:

Node x Edges connections

https://www.enjoyalgorithms.com/blog/graph-representation-in-data-structures
https://findtodaysnotes.wordpress.com/graph-representations/

https://www.enjoyalgorithms.com/blog/graph-representation-in-data-structures

● Data structures for representing many types of
networks, or graphs

● Nodes can be any (hashable)1 object, edges can contain
arbitrary data

● Flexibility ideal for representing networks found in many
different fields

● Online up-to-date documentation
● First public release in April 2005
● Supports I/O from many common graph formats

1 Objects that implement __hash__ and don’t change are
hashable i.e., immutable objects. This is the same requirement
as objects which can be used as dictionary keys

https://www.cl.cam.ac.uk/~cm542/teaching/2010/stna-pdfs/stna-lecture8.pdf

NetworkX core objects:

Graph, DiGraph, MultiGraph

Core objects support many attributes and methods
e.g., can build a graph by adding nodes and edges

A node can be any hashable object such as strings,
numbers, filehandles, functions, and more.

Constructing a simple graph in networkx
import networkx as nx

g = nx.Graph() # or nx.DiGraph() for directed

g.add_node(1) # method of nx.Graph

g.add_nodes_from([2 ,3]) # Add a list of nodes

g.remove_node(2) # remove nodes

g.add_node(lambda x: x+2) # function

g.add_node(open(’tmp.txt’,’w’)) # file handle

g.add_edge(1,2)

g.add_edge(*(2,3)) # unpack edge tuple

g.add_edges_from([(1 ,2) ,(1 ,3)]) # List of

edges

g.remove_edge(1,2)

Graph is accessed like a dictionary with
nodes as primary keys

Nodes can have many different attributes
associated with them.

Edges can also have attributes, with one
particular special attribute called “weight”.

“weight” should always be numeric and holds
values used by algorithms requiring
weighted edges (e.g., finding the shortest
path through a graph)

Node and Edge attributes and access

g.add_node(1, time=’5pm’)

g.node[1][’time’]

’5pm’

g.node[1]

{’time’: ’5pm’}

g.add_edge(1, 2, weight=4.0)

g[1][2][‘weight’] = 5.0 # edge already added

g[1][2]

{‘weight’: 5.0}

Node and Edge Iterators

Many applications require iteration over nodes
or over edges.

Graph objects in networkx can be used as
customisable iterators

for node in g.nodes():

print(node, g.degree(node))

1, 1

2, 1

g.add_edge(1,3,weight=2.5)

g[1][2][‘weight’] = 1.5

for n1, n2, attr in g.edges(data=True):

print(n1, n2, attr[‘weight’])

1, 2, 1.5

1, 3, 2.5

General read/write format

g = nx.read_format(“path/to/file.txt”,...options...)

nx.write_format(g,“path/to/file.txt”,...options...)

Read and write edge lists

g = nx.read_edgelist(path, comments='#', create_using=None,

delimiter=' ', nodetype=None, data=True, edgetype=None, encoding='utf-8')

nx.write_edgelist(g, path, comments='#', delimiter=' ', data=True, encoding='utf-8')

Graph I/O

Many graph operators supported

subgraph(G, list_of_nodes) - induce subgraph of G on nodes list_of_nodes

union(G1, G2) - graph union

compose(G1, G2) - combine graphs identifying nodes common to both

complement(G) - graph complement (join the unconnected nodes and disconnect the connected nodes)

create_empty_copy(G) - return an empty copy of the same graph class

convert_to_undirected(G) - return an undirected representation of G

convert_to_directed(G) - return a directed representation of G

https://www.cl.cam.ac.uk/~cm542/teaching/2010/stna-pdfs/stna-lecture8.pdf

Shortest Path Example

Use Dijkstra’s algorithm to find the shortest path
in a weighted and unweighted network:

g = nx.Graph()

g.add_edge(’a’, ’b’, weight=0.1)

g.add_edge(’b’, ’c’, weight=1.5)

g.add_edge(’a’, ’c’, weight=1.0)

g.add_edge(’c’, ’d’, weight=2.2)

print(nx.shortest_path(g, ’b’, ’d’))

[’b’, ’c’, ’d’]

print(nx.shortest_path(g, ’b’, ’d’, weighted=True))

[’b’, ’a’, ’c’, ’d’]

https://www.cl.cam.ac.uk/~cm542/teaching/2010/stna-pdfs/stna-lecture8.pdf

Graph Generators

Networkx supports many graph generator
function while can create specific types of
graphs

This includes random graphs which we can use
like random numbers to model/test relationships

For example:

Cows are sold/moved between herds. We have
empirical data on how often this happen and the
average size of herd. We can generate random
graphs using this data and then model the
disease dynamics if one cow is infected.

random graphs

er=nx.erdos_renyi_graph(100, 0.15)

ws=nx.watts_strogatz_graph(30, 3, 0.1)

ba=nx.barabasi_albert_graph(100, 5)

red=nx.random_lobster(100, 0.9, 0.9)

Comper, J. Reilly, et al. "Descriptive network analysis and the influence of timescale on centrality and cohesion
metrics from a system of between-herd dairy cow movements in Ontario, Canada." Preventive Veterinary
Medicine 213 (2023): 105861.

A lobster is a tree that
reduces to a caterpillar
when pruning all leaf

nodes. A caterpillar is a
tree that reduces to a

path graph when pruning
all leaf nodes.

Graph Drawing

NetworkX is not primarily a graph drawing
package but it provides basic drawing
capabilities by using Matplotlib.

Drawing a graph requires providing a layout:

import matplotlib.pyplot as plt

g = nx.erdos_renyi_graph(100,0.15)

nx.draw(g)

nx.draw_random(g)

nx.draw_circular(g)

nx.draw_spectral(g)

nx.draw_forceatlas2(g)

plt.savefig(“all_graphs_composed.png”)

Network Analysis: Centrality

Often we are interested in finding the “most
important” nodes in a network

Who are the key spreaders of disease?

Which servers going offline will take down the
entire network?

Who socially connects different groups of
people?

Lots of different ways to measure this centrality

Tanglay, Onur, et al. "Graph theory measures and their application to neurosurgical eloquence." Cancers 15.2 (2023): 556.

G = nx.read_graphml(“sars1_contact.gml”)

out_cent = nx.out_degree_centrality(G)

between = nx.betweenness_centrality(G)

pagerank = nx.pagerank(G)

top = sorted([(node, measure) for node, measure in

pagerank.items()], key=lambda x: x[1], reverse=True)

print(top[0:5])

1

6

35

130

127

Identifying superspreader in contact network

https://journals.plos.org/plospathogens/article/figure?id=10.1371/journal.ppat.1004092.g001#
ppat.1004092-Stein1

Interlude: what would you change about this
course?

Example Final Questions

Mid-Term Style Questions 1

x∗y

int(x)*int(y)

x*int(y)

x+y

x+int(y)

int(x)+int(y)

If x = ‘2’ and y = ‘3’, what will the following evaluate to:

Mid-Term Style Questions 1

x∗y # TypeError

int(x)*int(y) # 6

x*int(y) # ‘222’

x+y # ‘23’

x+int(y) # TypeError

int(x)+int(y) # 5

If x = ‘2’ and y = ‘3’, what will the following evaluate to:

Mid-Term Style Questions 2
def process_sequence(sequence):

 result = []

 for i in range(len(sequence)):

 if i == 0 or i == len(sequence)-1:

 result.append(sequence[i])

 else:

 result.append((sequence[i-1] + sequence[i] + sequence[i+1])/3)

 return result

data = [10, 20, 30, 40, 50]

processed = process_sequence(data)

print(processed)

What will this code print and why?

Mid-Term Style Questions 2
def process_sequence(sequence):

 result = []

 for i in range(len(sequence)):

 if i == 0 or i == len(sequence)-1:

 result.append(sequence[i])

 else:

 result.append((sequence[i-1] + sequence[i] + sequence[i+1])/3)

 return result

data = [10, 20, 30, 40, 50]

processed = process_sequence(data)

print(processed)

What will this code print and why?

List containing: [10, 20.0, 30.0, 40.0, 50]

First and last values will just be appended so kept as
integers

Other values will return the mean of before + self +
after which as input is even is just float of input

Explanatory Questions 1

Explain why you need to be careful if you use
mutable datatypes as the default value for
keyword arguments?

Explanatory Questions 1

Explain why you need to be careful if you use
mutable datatypes as the default value for
keyword arguments?

Default parameter values are evaluated only
once when the function is defined, not each time
the function is called. This means the same
mutable object is reused across all function
calls. So if the object is changed that side-effect
propagates through all calls of that function

Explanatory Questions 2

Explain the difference between supervised and
unsupervised learning. Provide an example of
how each might be applied to analyze data in a
scientific context.

Explanatory Questions 2

Explain the difference between supervised and
unsupervised learning. Provide an example of
how each might be applied to analyze data in a
scientific context.

Supervised Learning is a type of machine learning
where the algorithm learns from labeled training data.
The algorithm is provided with input features and their
corresponding output labels, and it learns to map inputs
to outputs (e.g., regression and classification).

Example: Predicting phenotypic antibiotic resistance
from a bacterial genome

Unsupervised Learning is where the algorithm learns
patterns from unlabeled data. Without output labels, the
algorithm must find structure in the input data on its own
(e.g., clustering or dimensionality reduction).

Example: Searching for groups of participants in a
psychological study based on their answers

Explanatory Questions 3

Explain the concept of reproducible research in
computational science. Describe at least three
Python features or practices that can help to make
computational research more reproducible.

Explanatory Questions 3

Explain the concept of reproducible research in
computational science. Describe at least three
Python features or practices that can help to make
computational research more reproducible.

Reproducible research refers to the ability of other
researchers (or your future self) to recreate the exact same
results from your computational analysis using the same
data. This is both a critical aspect of the scientific method
and should be bare minimum.

Python supports reproducibility through features such as:

- Jupyter notebooks (which support documented
re-runnable analyses)

- Comments/docstrings (explaining code)
- Random seeds (reproducible pseudorandom

numbers)
- Automating data processing/visualisation in

notebooks or scripts (avoiding
manual/undocumented steps in your analyses)

- Modularising code to avoid copy and pasting errors
and making it easier to apply the same code many
times via functions & modules/packages

Bug Hunting 1

Identify and fix the bug in this function so that it
correctly calculates the mean temperature.

def calculate_mean(temperatures):

 total = 0

 for temp in temperatures:

 total = total + temp

 return total / len(temperatures)

temperatures = ['22.5', '23.1', '21.9', '22.8', '23.5']

mean_temp = calculate_mean(temperatures)

print(f"The mean temperature is {mean_temp} degrees
Celsius.")

Bug Hunting 1

Identify and fix the bug in this function so that it
correctly calculates the mean temperature.

Convert temperatures to floats from strings
(alternatively add exceptions/try)

def calculate_mean(temperatures):

 total = 0

 for temp in temperatures:

 total = total + float(temp)

 return total / len(temperatures)

temperatures = ['22.5', '23.1', '21.9', '22.8', '23.5']

mean_temp = calculate_mean(temperatures)

print(f"The mean temperature is {mean_temp} degrees
Celsius.")

Bug Hunting 2

Work out why this function will not return the
correct values when evaluated using the test
cases at the bottom. Fix this issue.

def classify_growth_rate(doubling_time):

 if doubling_time <= 1.0:

 growth_rate = "high"

 if doubling_time <= 3.0:

 growth_rate = "medium"

 if doubling_time > 3.0:

 growth_rate = "low"

 return growth_rate

print(classify_growth_rate(0.5)) # Should print "high"

print(classify_growth_rate(2.0)) # Should print "medium"

print(classify_growth_rate(5.0)) # Should print "low"

Bug Hunting 2

Work out why this function will not return the
correct values when evaluated using the test
cases at the bottom. Fix this issue.

Convert to if-elif-else (or if elif-elif) statement
instead of change of if’s

def classify_growth_rate(doubling_time):

 if doubling_time <= 1.0:

 growth_rate = "high"

 elif doubling_time <= 3.0:

 growth_rate = "medium"

 else:

 growth_rate = "low"

 return growth_rate

print(classify_growth_rate(0.5)) # Should print "high"

print(classify_growth_rate(2.0)) # Should print "medium"

print(classify_growth_rate(5.0)) # Should print "low"

Bug Hunting 3

This code uses functional programming concepts to filter
a list of experimental samples based on certain criteria
and then calculate their mean value.

Find and fix the bug.

def process_experimental_data(data):

 # Filter samples with values above 50

 filtered_data = filter(lambda x: x['value'] > 50, data)

 # Extract just the values

 values = map(lambda x: x['value'], filtered_data)

 # Calculate the mean

 return sum(values) / len(values)

samples = [

 {'id': 1, 'value': 45.2, 'timestamp': '2024-03-15'},

 {'id': 2, 'value': 67.8, 'timestamp': '2024-03-15'},

 {'id': 3, 'value': 52.3, 'timestamp': '2024-03-16'},

 {'id': 4, 'value': 39.1, 'timestamp': '2024-03-16'},

 {'id': 5, 'value': 88.5, 'timestamp': '2024-03-17'}

]

mean_value = process_experimental_data(samples)

This code uses functional programming concepts to filter
a list of experimental samples based on certain criteria
and then calculate their mean value.

Find and fix the bug.

Bug: The bug occurs because filter() and map() return
iterators (specifically generators), not lists. When len(values)
is called there is a TypeError as these iterators don’t
implement __len__ (and even if they did then the values
iterator would have been consumed by the sum() function)

Bug Hunting 3
def process_experimental_data(data):

 # Filter samples with values above 50

 filtered_data = filter(lambda x: x['value'] > 50, data)

 # Extract just the values

 values = list(map(lambda x: x['value'], filtered_data))

 # Calculate the mean

 return sum(values) / len(values)

samples = [

 {'id': 1, 'value': 45.2, 'timestamp': '2024-03-15'},

 {'id': 2, 'value': 67.8, 'timestamp': '2024-03-15'},

 {'id': 3, 'value': 52.3, 'timestamp': '2024-03-16'},

 {'id': 4, 'value': 39.1, 'timestamp': '2024-03-16'},

 {'id': 5, 'value': 88.5, 'timestamp': '2024-03-17'}

]

mean_value = process_experimental_data(samples)

● Graph-structured Data
● Networks/Graphs Basics
● NetworkX
● Nodes/Edges in NetworkX
● Network I/O
● Network Visualization
● Centrality Analyses
● Final Exam Question Examples

○ Mid-Term Style Questions
○ Explain This Concept questions
○ Fix This Bug Questions

Overview

